INTEGRATION

1 a Express $\frac{1}{x^{2}-3 x+2}$ in partial fractions.
b Show that

$$
\begin{equation*}
\int_{3}^{4} \frac{1}{x^{2}-3 x+2} \mathrm{~d} x=\ln \frac{a}{b}, \tag{5}
\end{equation*}
$$

where a and b are integers to be found.
2 Evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{6}} \cos x \cos 3 x \mathrm{~d} x . \tag{6}
\end{equation*}
$$

3 a Find the quotient and remainder obtained in dividing $\left(x^{2}+x-1\right)$ by $(x-1)$.
b Hence, show that

$$
\int \frac{x^{2}+x-1}{x-1} \mathrm{~d} x=\frac{1}{2} x^{2}+2 x+\ln |x-1|+c
$$

where c is an arbitrary constant.

4

The diagram shows the curve with equation $y=2-\frac{1}{\sqrt{x}}$.
The shaded region bounded by the curve, the x-axis and the lines $x=1$ and $x=4$ is rotated through 360° about the x-axis to form the solid S.
a Show that the volume of S is $2 \pi(2+\ln 2)$.
S is used to model the shape of a container with 1 unit on each axis representing 10 cm .
b Find the volume of the container correct to 3 significant figures.
5 a Use integration by parts to find $\int x \ln x \mathrm{~d} x$.
b Given that $y=4$ when $x=2$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x y \ln x, \quad x>0, \quad y>0,
$$

and hence, find the exact value of y when $x=1$.
6 a Evaluate $\int_{0}^{\frac{\pi}{3}} \sin x \sec ^{2} x \mathrm{~d} x$.
b Using the substitution $u=\cos \theta$, or otherwise, show that

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\cos ^{4} \theta} \mathrm{~d} \theta=a+b \sqrt{2},
$$

where a and b are rational.

7

The diagram shows part of the curve with parametric equations

$$
x=2 t+1, \quad y=\frac{1}{2-t}, \quad t \neq 2
$$

The shaded region is bounded by the curve, the coordinate axes and the line $x=3$.
a Find the value of the parameter t at the points where $x=0$ and where $x=3$.
b Show that the area of the shaded region is $2 \ln \frac{5}{2}$.
c Find the exact volume of the solid formed when the shaded region is rotated completely about the x-axis.

8 a Using integration by parts, find

$$
\begin{equation*}
\int 6 x \cos 3 x d x \tag{5}
\end{equation*}
$$

b Use the substitution $x=2 \sin u$ to show that

$$
\begin{equation*}
\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x=\frac{\pi}{3} \tag{5}
\end{equation*}
$$

9 In an experiment to investigate the formation of ice on a body of water, a thin circular disc of ice is placed on the surface of a tank of water and the surrounding air temperature is kept constant at $-5^{\circ} \mathrm{C}$.
In a model of the situation, it is assumed that the disc of ice remains circular and that its area, $A \mathrm{~cm}^{2}$ after t minutes, increases at a rate proportional to its perimeter.
a Show that

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} t}=k \sqrt{A} \tag{3}
\end{equation*}
$$

where k is a positive constant.
b Show that the general solution of this differential equation is

$$
\begin{equation*}
A=(p t+q)^{2} \tag{4}
\end{equation*}
$$

where p and q are constants.
Given that when $t=0, A=25$ and that when $t=20, A=40$,
c find how long it takes for the area to increase to $50 \mathrm{~cm}^{2}$.

10

$$
\begin{equation*}
\mathrm{f}(x) \equiv \frac{5 x+1}{(1-x)(1+2 x)} \tag{5}
\end{equation*}
$$

a Express $\mathrm{f}(x)$ in partial fractions.
b Find $\int_{0}^{\frac{1}{2}} \mathrm{f}(x) \mathrm{d} x$, giving your answer in the form $k \ln 2$.
c Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, for $|x|<\frac{1}{2}$.

